振動障害のレイノー現象の診断に対するFSBP% の有用性の有用性について

那須吉郎 (振動障害研究センター長)

藤原 豊 (美唄労災病院・嘱託医)

本間浩樹 (岩見沢労災病院・振動障害センター長)

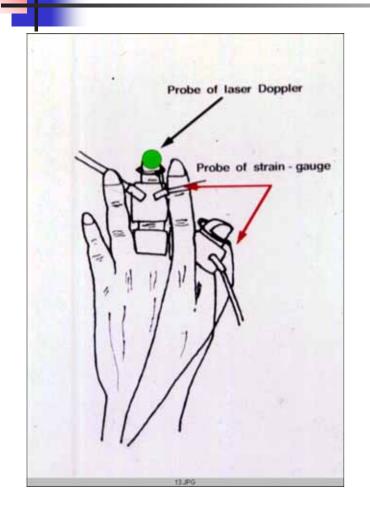
梁井俊郎 (九州労災病院・健康診断部部長)

豊永敏宏 (九州労災病院・リハビリテーション科部長

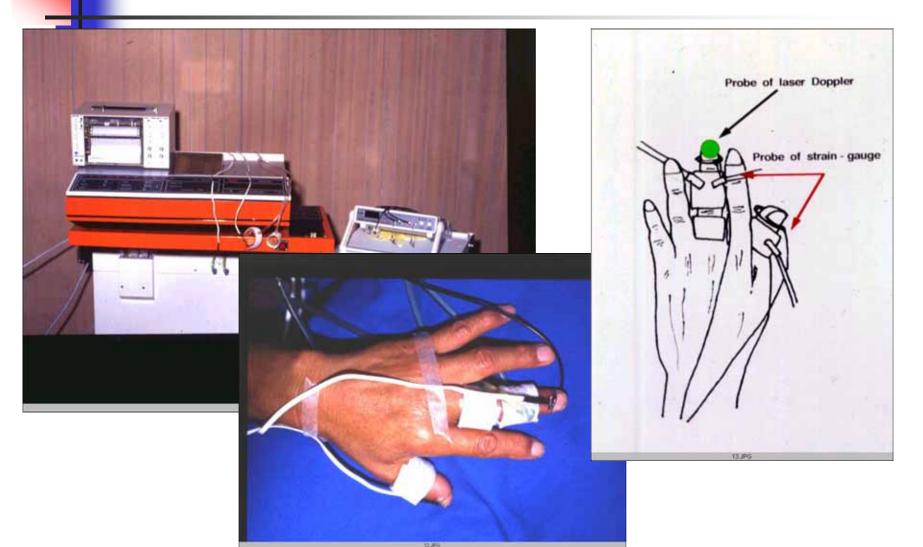
木戸健司 (愛媛労災病院・第2整形外科部長)

池田天史 (熊本労災病院 整形外科部長)

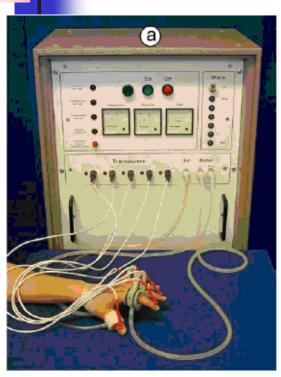
橋口浩一 (山陰労災病院 脊椎整形外科部長)

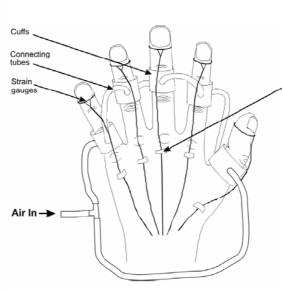

黒沢洋一 (鳥大学医学部・健康政策医療分野教授)

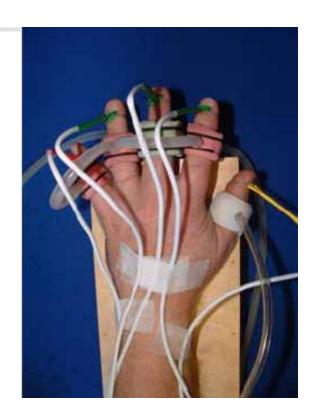
Finger Systolic Blood Pressure の変化(%)とは?


指血流を5分間遮断中に、10 で測定指だけを冷却し、冷却直後の、Finger Systolic Blood Pressureを測定し、対照指(母指)の変化を参照し、変化率(%)を求める方法

冷水負荷皮膚温テストと比較し、レイノー現象 に対する診断精度が高い。


冷水負荷皮膚温テストFSBP% (室温24)5分率10分率敏感度5.9%50.0%88.2%特異度97.7%69.8%76.8%


FSBP%値がゼロ: レイノー現象を検査室段階で確認


Strain gauge plethysmograph (Medimatic社製 DM2000)

HvLab Multi-channel Plethgysmograph

現在の日本における末梢循環障害に対する 測定項目

皮膚温テスト(安静時および冷水負荷テスト) 爪圧迫テスト(安静時および冷水負荷テスト) 指尖端容積脈波 サーモグラム

末梢循環機能検査結果は測定環境条件に強く影響される。

室温:20-23 、着衣量の規定はない。

診断精度

レイノー現象をgolden standardとしてみた場合

冷水負荷皮膚温テスト FSBP% (室温24)

5分率 10分率

敏感度 5.9% 50.0% 88.2%

特異度 97.7% 69.8% 76.8%

FSBP%

FSBP%は寒冷刺激による血管収縮反応を観察 レイノー現象は寒冷刺激による強い血管収縮反応の結果である。

冷水負荷皮膚温テスト 冷却刺激後の血管拡張機能

世界の情勢

振動障害の診断

北欧

末梢循環障害:

レイノー現象の有無が業務上認定のキーポイント: FSBP%の測定

末梢神経障害:客観的な検査法?

骨関節系の運動器障害:客観的な検査法?

振動障害の治療:日本のような治療体系をとっていない。

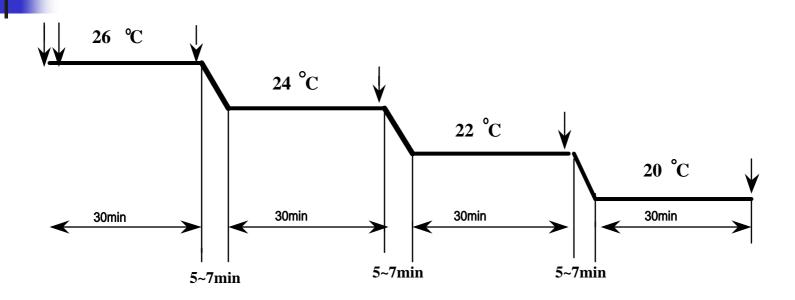
研究の流れ

予防を重視:初期の障害をいかにキャッチするか

末梢神経障害の検査法(振動覚、温冷覚)

■ すべての機能検査結果は測定条件の影響を受ける

室温 気流の強さ 着衣量

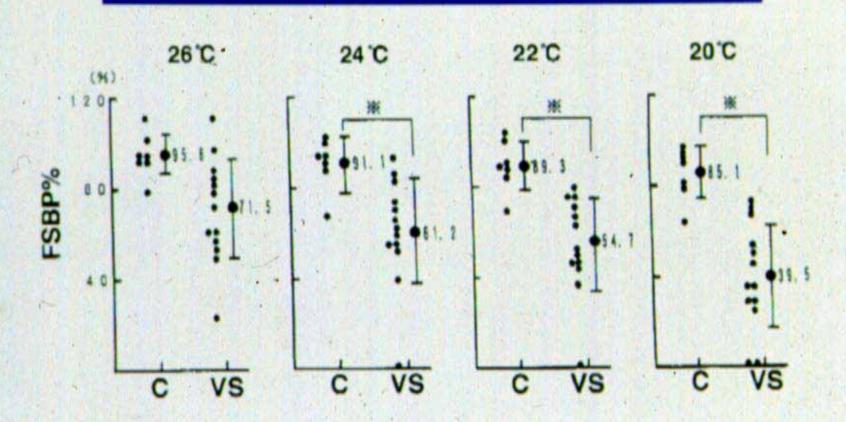

湿度 輻射熱

すべての機能検査結果は内的条件の影響を受ける

測定時間帯(早朝と夕方)

食後1時間

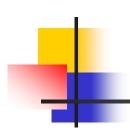
Changes of Room Temperature from 26 to 20 C $^{\circ}$



: entrance into the room

: time at measurement beginning

室温によるFSBP%の変化


Effects of Room Temperature on FSBP% (local cooling)

VS: cass with VWF

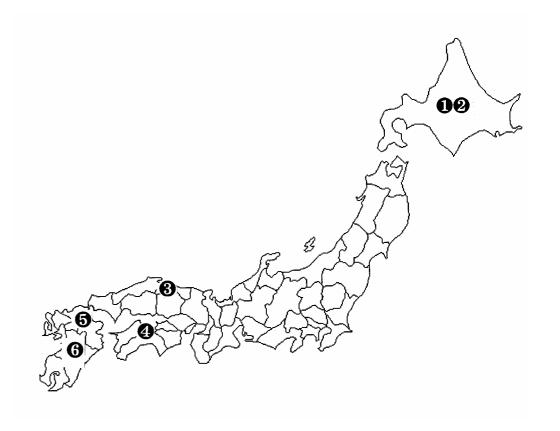
C : controls

张 P < 0.01

Strain-gauge plethysmography による FSBP%測定

閉塞性動脈疾患との鑑別が可能 臨床的に末梢循環障害の客観的判定 medico-legal な判定(定量的測定) 測定環境の影響(室温が低いほど精度は高い) 局所冷却と全身冷却の組み合わせ ISO 室温21±1 、10 5分 レイノー現象の確認 現在、世界で2機種

Medimatic HvLabo



参加施設

労災病院群:35病院

参加施設

- 1 美唄労災病院
- 2 岩見沢労災病院
- 3 山陰労災病院
- 4 九州労災病院
- 5 愛媛労災病院
- 6 熊本労災病院

臨床データ -

測定期間

2004年 10月 ~ 2005年3月

2005年10月~ 2006年4月

臨床データー、測定結果 山陰労災病院に集積し、分析した。

Methods

測定方法: The international standard (ISO/DIS 14835-2)

肢位:仰臥位、着衣量:上下2枚、靴下着用

室温への馴化時間:30分以上:

測定指:

対照指:母指

レイノー現象(+)例:最も障害の強い指

レイノー現象(一) 例と対照例: 左中指

装置: strain-gauge plethysmograph (Digimatic 2000)

冷却温度:10

冷却時間:5 min.

FSBP%に及ぼす室温の影響

first:室温 23±1

next:室温 21±1

測定中の手周囲の室温を連続記録、PCに保存後、平均 室温を求めた。

上記室温に外れた症例は統計処理から除外した。

施設別の症例数

	労災病院	完					
	美唄 岩見沢		山陰	愛媛	九州	熊本	合計
対照者	22	16	31	19	34	32	154
振動曝露労働者	13	36	75	0	0	11	135
슴計	35	52	106	19		43	289

非振動曝露群(対照群)におけるFSBP%値 の地域差の比較

	例数	FSBP% 值
北海道	38	8 7.0 ± 20.2
中四国	33	86.7 ± 16.1
九州	64	90.0 ± 21.3

対象者の特性

	N	Age	Smokers (%)	Years of vibration	
Group	11		Sinorers (70)	exposure	
Unexposed referents	154	46.7±16.6	39.4	-	
Exposed without VWF	21	64.7±15.9	47.6	20.2 ± 11.8	
Inactive VWF	31	75.1 ± 6.6	43.3	13.6 ± 10.0	
Active VWF	83	70.7 ± 8.7	42.1	18.9±11.9	

■ Unexposed referents:対照者

■ Exposed without VWF: 振動曝露者で過去から現在に到るもレイノー現象なし

■ Inactive VFW:過去1年間にレイノー現象の出現なし

■ Active VWF :過去1年間にレイノー現象の出現なし

対照群における年齢別に見たFSBP%の値

(**室温条件**: 21 ± 1 · 23 ± 1)

Age	N	FSBP% at 21±1	N	FSBP% at 23±1
20-29	28	87.0 (54.2-121.7)	18	92.8 (65.0-127.3)
30-39	22	100.0 (67.6-123.5)	22	100.0 (68.9-166.0)
40-49	22	93.9 (56.4-108.0)	22	97.2 (63.7-114.0)
50-59	23	96.6 (50.0-110.0)	14	103.1 (86.3-125.0)
60-69	20	79.8 (35.3-118.0)	14	95.6 (43.2-12.5)
70-89	15	81.0 (36.0-103.0)	10	83.8 (60.2-105.6)

: significant difference P<0.05, compared with younger group

VWFの重症度別に見たFSBP%の値 (室温条件: 21 ± 1 · 23 ± 1)

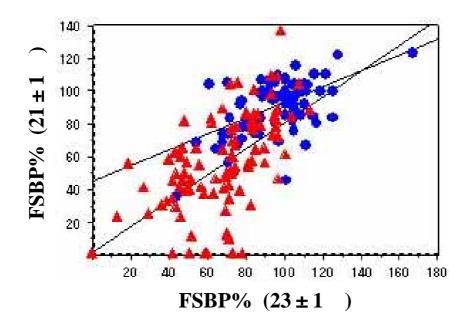
	N	FSBP% at 21±1	N	FSBP% at 23±1
Unexposed referents	130	91.1 (35.2-123.5)	100	95.9 (43.2-166.0)
Exposed without VWF	19	78.1 (11.5-103.9)	13	81.9 (45.4-113.6)
Inactive VWF	26	56.1 (8.9-108.3)	21	818 (13.4-107.8)
Active VWF	84	49.4 (0.0-136.0)	75	64.5 (0.0-107.7)

VWF; vibration-induced white finger

Significant different from the unexposed referents (P<0.05)

Significant different from the exposed without VWF and the unexposed referents (P<0.05)

60歳以上を対象とした4群間でのFSBP%値の比較

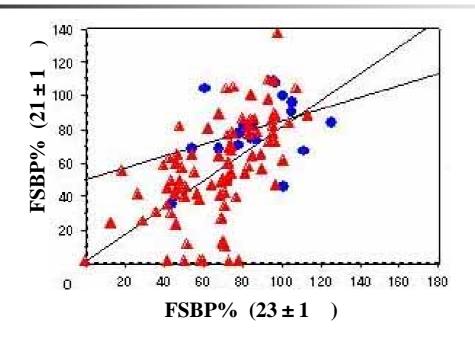

	N	FSBP% at 21±1	N	FSBP% at 23±1
Unexposed referents	35	81.0 (35.2-111.8)	24	84.5 (43.2-125.0)
Exposed without VWF	16	82.7 (11.5-103.9)	11	83.9 (45.4-113.6)
Inactive VWF	26	56.1 (8.9-108.3)	31	81.8 (13.4-107.8)
Active VWF	67	50.0 (0.0-136.0)	68	66.2 (0.0-107.7)

Significant different from the unexposed referents (P<0.05) Significant different from the exposed without VWF group (P<0.05)

FSBOP%値がゼロの症例

室温.	症例数	FSBP%値ゼロ症例数
20℃台	62	6
21℃台	37	7
22℃台	70	6
23℃台	37	2
24℃台	42	2

2種類の室温下でのFSBP% 値の分布 (全症例)


:Unexposed control referents, :Exposed subjects

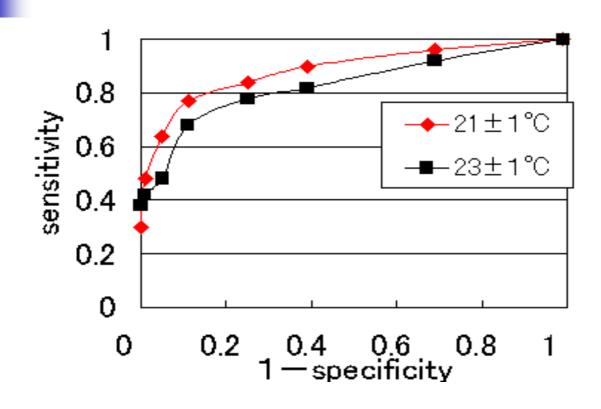
X-axis: Values of FSBP% obtained at room temperature of 21 ± 1 Y-axis: Values of FSBP% obtained at room temperature of 23 ± 1

:FSBP%(21 ± 1)= 44.783 + 0.48xFSBP%(23 ± 1) R-2= 0.429 :FSBP%(21 ± 1)= 1.786 + 0.786xFSBP%(23 ± 1) R-2= 0.429

2種類の室温下でのFSBP% 値の分布

(60歳以上)

:Unexposed control referents

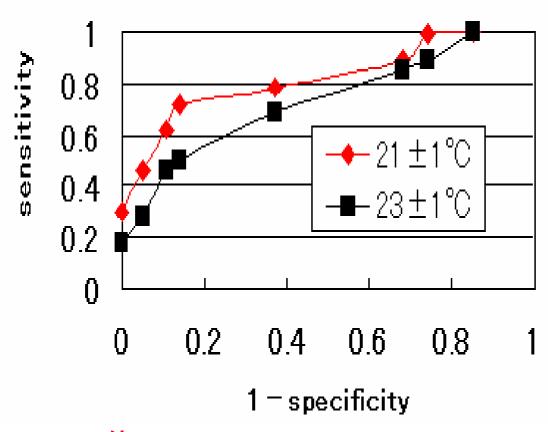

:Exposed subjects

X-axis: Values of FSBP% obtained at room temperature of 21 ± 1 Y-axis: Values of FSBP% obtained at room temperature of 23 ± 1

```
: FSBP%(21±1 )= 49.542+0.352xFSBP%(23±1 ) R-2= 0.139
: FSBP%(21±1 )= 1.328 + 0.8xFSBP%(23±1 ) R-2= 0.455
```

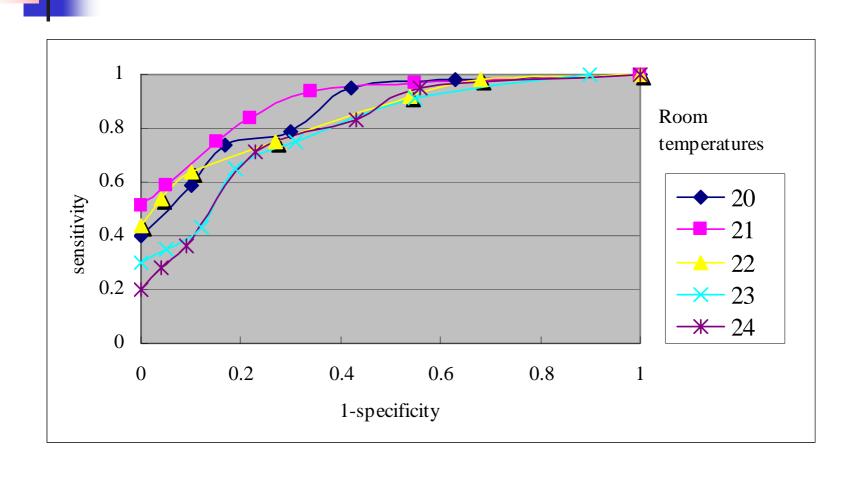
ROC 曲線(VWFの診断に対するFSBPテスト)

(振動曝露群全例を対象)


Cut-off值: 75%

敏感度: 77.1%, 特異度: 79.5% (21 ± 1)

ROC 曲線(VWFの診断に対するFSBPテスト)


(振動曝露群の中の60歳以上を対象)

Cut-off 值:80%

敏感度: 81.2%, 特異度: 48.7% (21 ± 1)

各室温別のVWF診断のために FSBP%のROC曲線

Discussion-1: 年齢の影響

(1) Bovenzi:健康な対象者291 例(20 to 69 歳)

室温条件: 22 to 23 .

年齢によるFSBP%への影響はない。

(2) 我々の結果:健康な対象者154 例(20 to 89 歳)

室温条件: 23 ± 1

20歳~69歳の範囲では年齢によるFSBP%への影響はない。70歳以上では、若年者群と比較しFSBP&%値は低い。

(3) 室温条件: 21 ± 1 , 6 0歳以上では、若年者群と比較しFSBP&%値は低い。

診断精度

- 室温条件: 21 ± 1
- 振動曝露群全例を対象(Cut-off値: 75%)

敏感度: 77.1% 特異度: 79.5% 振動曝露群の中の60歳以上を対象

(Cut-off 値:80%)

敏感度: 81.2% 特異度: 48.7%

診断精度

Author	Year	Reference	Subject	Finger cooling (reference temperature)	Body	Room temperature	Cut off FSBP%	Sensitivity	Specificity
Olsen and Nielsen	1979	(7)	20 controls 5 exposed controls 13 VWF patients	(30°C) 10°C 6°C	8-12°C 10min	15-19°C	FSBP=0	100	87
Olsen et al.	1982	(8)	20 controls 26 exposed controls 13 VWF patients	(30°C) 10°C 6°C	8-12°C 10min	16-19°C 9-16°C	FSBP=0	91	81
Ekenval and Lindblad	1982	(9)	10 controls 10 exposed controls 10 VWF patients	(30°C) 15°C 10°C		23°C 17°C	FSBP%<60%	100	100
Pyykkö et al.	1986	(10)	21 exposed controls 27 inactive VWF 12 active VWF	(30°C) 20°C 15°C 10°C 15°C		18-22°C		25	95
Ekenval and Lindblad	1986	(11)	14 controls 15 exposed controls 111 VWF patients	(30°C) 15°C 10°C		16°C	FSBP%<60%	74	97
Bovenzi	1988	(12)	30 controls 56 exposed controls 20 VWF patients	(30°C) 10°C		22°C	FSBP%<60%	100	87
Olsen	1988	(13)	15controls 56exposed controls 23 VWF patients	(30°C) 15°C 6°C	8-12°C 10min	20-22°C	FSBP=0	87	100
Virokannas and Rintamaki	1991	(14)	37 unexposed controls 37 VWF patients	(30°C) 15°C 10°C		20-23°C	FSBP%<76%	50	84
Kurozawa et al.	1991	(15)	22 controls 40 exposed controls 60 VWF patients (mild 36 severe 24)	(35°C) 10°C	10°C 10min	26°C	FSBP%<90%	82	90
Kurozawa et al.	1992	(16)	13 controls 40 exposed controls 59 VWF patients	(35°C) 10°C		26°C	FSBP%<80%	88	77
Allen et al.	1992	(17)	22 controls 8 exposed controls 26 VWF patients	15°C 10°C		16°C 20°C 24° C	FSBP=0	81	100
Bovenzi	1993	(18)	31 controls 46 exposed controls 19 VWF patients	(30°C) 15°C 10°C		22-23°C	FSBP%<60%	84	98
Bovenzi	2002	(19)	455 controls 723 exposed controls 151 VWF patients	(30°C) 10°C		20°C - 23°C	FSBP%<60%	87	94

Discussion - 2: 報告された敏感度、特異度と比較し、 なぜ、今回の値は低いのか

■ 測定室温の温度幅の違い

- 職業病としての認定後、振動工具の使用中止し、内服薬を含めた医学的治療を長期間受けている。
- 振動工具の使用中止のみならず、長期間休業し職業的活動を含めた身体的活動がない。